Exploration, Exploitation and Incentives

Yishay Mansour

Outline

- Incentives:
- Actions are only recommendations
- Agents decide whether to follow them
- Need to induce exploration!
- Two deterministic actions
- Optimal policy
- Two stochastic actions
- Generic framework

Report Cards

－Report－card systems
－Health－care，education，．．．
Public disclosure of information
－Patients health，students scores，．．．
－Pro：
－Incentives to improve quality
－Information to users
－Cons：
－Incentives to＂game＂the system
－avoid problematic cases

Health Care Report Card 2009 Edition	Quality	
Does Your Health Plan Measure Up？	Meeting National －Standards of Care	Members Rote
Aetna Health of Califorma，Inc．	右	成
Anthem Blue Cross	芧	今
Blue Shield of California HMO	瓦预	芧
CIGNAHMO	芧	人
Heath Net of California，Inc．	芧令	令令
Kaiser Permanentel $\mathrm{Na}^{\text {c CA A Pajon }}$	欵令令	疑令
Kaiser Permanentel So．CA Region	成领会	成次令
PacifiCare of California	芧会次	成
Western Health Advantage	成会令	成预
California＇s Health Plan Ratings Excellent 人 人 人 人 Good 央人 Fair Poor	Are you and your family getting the care you deserve？ HealthCare Quality．ca．gov 1－866－466－8900 TTY／TDD 1－866－499－0858	

User Based Recommendations

- Recommendation web sites
- Example: TripAdvisor
- User based reviews
- Popularity Index
- Proprietary algo.
- Self-reinforcement
- Can be used to induce exploration

Waze: User based navigation

- Real time navigation recommendations
- Based on user inputs
- Cellular/GPS
- Recommendation dilemma:
- Need to try alternate routes to estimate time
- Actually, done in practice

Resell tickets

- Secondary market for show tickets
- StubHub
- Matches sellers and buyers
- New feature: price recommendation
- Implicit coordination between sellers

Multi-Arm Bandit

- Simple decision model
- Multiple independent actions
- Uncertainty regarding the rewards
- Repeated interaction
- Tradeoff between exploration and exploitation

MAB

Classical setting

- uncertainty regarding rewards
- action execution:
- arbitrary

Today setting

- uncertainty regarding rewards
- action execution:
- control by agents
- Bayesian Incentive Compatible (BIC)

Our Motivation

$>$ Agents need to select between few alternatiy s:

- Hotels, Traffic routes, Doctors, ticket price
- Known prior on the success
$>$ Multiple agents arriving:
- Each makes one decision, and gel
- Individual agents are strategro
- Maximizing their reward
> Planner:
- Would like to learn and implement he better alternative
o Government, regulator, society, etc.
o Maximize user satisfaction

Main Research Question

>Planner policy limitations:

- No monetary incentives
- Controlling revelation of information
-Can the planner induce exploration?
- Guarantee that the best alternative is selected
$>$ What is the expected regret
- Compared to a non-strategic setting.
- Bound the cost of exploration

Model

Environment

- K actions: $a_{1} \ldots a_{k}$
- Prior over μ_{i}
- Realized only once, initially
- Given μ_{i} action i has reward R_{i} (r.v.) s.t. $E\left[R_{i}\right]=\mu_{i}$
- Deterministic/stochastic
- Range [0,1]
- Notation: $\mathrm{E}\left[\mu_{\mathrm{i}-1}\right]>\mathrm{E}\left[\mu_{\mathrm{i}}\right]$

Agents

- Tagents
- Arrive sequentially
- Known arrival order
- Select once a single action
- Get the reward of the selected action
- Risk neutral
- Agent optimal strategy:
- Given all the observed information
- Select the action that maximizes expected payoff

Model

Planner

- Controls the information
- Agents are Incentive Compatible
- No side payments
- Planner goal:
- Social welfare maximization
- Minimize regret
- REGRET $=T^{*} \max \mu_{\mathrm{i}}-\mathrm{E}[$ Rew $]$
- Arbitrary
- Max-min, etc.

Planner actions:

- Gives agent \boldsymbol{t} message $\boldsymbol{m}_{\boldsymbol{t}}$
- information about past.
- W.l.o.g. recommendation a_{t}
- Observes the outcome
- Realization $r_{a_{t}}$
- Cumulative Reward

$$
\text { Rew }=\sum_{t} r_{a_{t}}
$$

- Agents know Planner policy

Controlling Information

Report Cards
Public Recom.

Waze
Individual
Recom.

TripAdvisor Popularity Index
ఠఠ. \#1 of 1,060 hotels in London

Ranked \#19 for business in London

Rating	Details	Photos (17)	Map

TripAdvisor Traveller Rating (O)○○ 156 Reviews
\# $\mathbf{9 8} \%$ | Write a review
"Literally a home away from home" 4 Apr 2011 - Primula 2011
"I have found my new London home!" 25 Mar 2011 - Trippar

Ticket resell
Group recom.

TripAdvisor
Time based

Simple recommendations: No information

$>$ Example:

- $R_{1} \sim \boldsymbol{U}[-1,5]$
- $R_{2} \sim \boldsymbol{U}[-5,5]$
- T large (optimal to test the both alternatives).

$>$ All agents prefer the better a priori alternative - Action 1
$>$ No exploration!
$>$ High regret: $2.6^{*} \mathrm{~T}-2 * \mathrm{~T}=0.6^{*} \mathrm{~T}$

Simple recommendations:

 Full Transparency

 Full Transparency}
$>$ Agent 1: chooses the first action.
$>$ Agent 2: Observes r_{1}

- If $r_{1}>0$: Selects action 1
- All following agents select action 1
- If $r_{1} \leq 0$: Selects action 2
- All following agents select the better action
$>$ outcome is suboptimal for large T:
- Regret $=2.6^{*} \mathrm{~T}-2.252 * \mathrm{~T}=0.348^{*} \mathrm{~T}$

Public Recommendations

- Better than Full information
- Only recommendations are public
- In the example:
recommend action 2
If $r_{1}<+1$
- Main Observation:
all exploration can move to second agent
- Simple characterization
- Significant limitation
- Linear regret:
2.6*T - 2.42*T =0.18*T

Explorable Actions: Two deterministic actions

- Can we hope to explore any action?!
- Main limitation is BIC
- Example:
- Action 1 always payoff 0
- Action 2 prior Unif[-2,+1]
- $E\left[R_{2}\right]=-1 / 2<0$
- Agent t knows:
- All prior agents preferred action 1
- Planner has no info on action 2
- Hence, will do action 1

Condition
$\operatorname{Pr}\left[\mu_{1}<E\left[\mu_{2}\right]\right]>0$

Explorable actions:
 Two stochastic actions

$>$ Requirement

- We need "Evidence" that action 2 might be better
- For this we can use realizations of action 1
$>$ Condition for a distribution P
- There exists k_{p} such that there exists
- $\operatorname{Pr}\left[E\left[\mu_{2}\right]>E\left[\mu_{1} \mid\right.\right.$ some k_{p} outcomes $]$] >0

Optimal Policy (first agent)

- Example:
- $R_{1} \sim \boldsymbol{U}[-1,5]$
- $R_{2} \sim \boldsymbol{U}[-5,5]$
- T large (optimal to test the both alternatives).

$>$ Recommend action 1 to first agent
- The only recommendation agent 1 will follow

Optimal Policy (second agent)

$>$ recommends $2^{\text {nd }}$ alternative to agent two whenever $r_{1} \leq 1$.
\Rightarrow This is IC because

- $\mathrm{E}\left[\mathrm{R}_{1} \mid\right.$ recommend(2) $]=0$

$>$ Better than full transparency
$>$ more experimentation by the second agent.
$>$ full transparency is sub-optimal.
$>$ But we can do even better.

Optimal Policy (3 ${ }^{\text {rd }}$ agent)

$>$ recommends third agent to use $2^{\text {nd }}$ action if one of two cases occurs
i. Second agent tested $2^{\text {nd }}$ action ($\boldsymbol{R}_{1} \leq \mathbf{1}$) and the planner learned that $\boldsymbol{R}_{\mathbf{2}}>\boldsymbol{R}_{\mathbf{1}}$
ii. $\mathbf{1}<\boldsymbol{R}_{1} \leq \mathbf{1}+\boldsymbol{x}$, so the third agent is the first to test $2^{\text {nd }}$ action
iii. Gain is constant. Loss due to exploration can be made arbitrarily small. We can always balance them.

Two deterministic actions

Optimal Algorithm

- Agent 1:
- recommend action 1.
- Observe reward r_{1}
- Agent $\mathrm{t}>1$:
- Both actions sampled: recommend the better action
- Otherwise: If $r_{1}<\theta_{t}$ then recommend action 2 otherwise action 1

Properties of optimal policy

- Recommendation sufficient
- revelation principle
- IC constraints tight
- Generally: explore low values before high
- threshold
- Intuition: tradeoff between potential reasons for being recommended action 2

Recommendation Policy

Recommendation Policy:

- For agent t,
- Gives recommendation $r e c_{t}$
- Recommendation is IC
- $E\left[R_{j}-R_{i} \mid r e c_{t}=a_{j}\right] \geq 0$
- Note that it requires IC:
- Implies: recommend to agent 1 action a_{1}
- Claim: Optimal policy is a Recommendation Policy

Proof (Revelation Principle):

- $M(j, t)$ - set of messages that cause agent t to select action a_{j}.
- $H(j, t)$ - the corresponding histories
- $E\left[R_{j}-R_{i} \mid m\right] \geq 0$ for $m \in M(j, t)$
- Consider the recommendation a_{j} after $h \in H(j, t)$
- Still IC
- Identical outcomes

Partition Policy

Partition Policy:

- Recommendation policy
- Agent 1: recommending action a_{1} and observing r_{1}
- Disjoint subsets $I_{t}, t \geq 2$
- If $r_{1} \in I_{t}$
- Agent t first to explore a_{2}
- Any agent $t^{\prime}>t$ uses the better of the two actions
- Payoff max $\left\{r_{1}, r_{2}\right\}$
- If $r_{1} \in I_{T+1}$ no agent explores ${ }_{a}{ }_{2}$

Optimal policy is a partition:

- Recommending the better action
- when both are known
- Optimizes sum of payoffs
- Strengthen the IC

Only worse action is "important"

Lemma:

Any policy that is
IC w.r.t. a_{2} is
IC w.r.t. a_{1}

Proof:

- Let $K_{t}=\left\{\left(R_{1}, R_{2}\right)\right\}$ set of event that cause rec $_{t}=a_{2}$
- If empty then $E\left[R_{1}-R_{2}\right] \geq 0$
- Otherwise: $E\left[R_{2}-R_{1} \mid K_{t}\right] \geq 0$
- Since it is an IC policy
- Originally: $E\left[R_{2}-R_{1}\right]<0$
- Therefore

$$
\mathrm{E}\left[\mathrm{R}_{2}-\mathrm{R}_{1} \mid \operatorname{not} \mathrm{K}_{\mathrm{t}}\right]<0
$$

Second agent explores low values

- Claim: The second agent explores for any value
$r_{1}<\mu_{2}$
- Proof:
- Consider an agent t that explores for $r_{1}<\mu_{2}$
- Call this set of values B
- Move the exploration of B to agent 2
- Agent 2: Improve the IC constraint for a_{2}
- By $E_{B}\left[\mu_{2}-r_{1}\right]>0$
- Agent t : Improve the IC constraint for a_{2}
- When $r_{1} \in B$ the payoff is $E_{B}\left[\max \left\{r_{2}, r_{1}\right\}\right]$

IC constraints

\rightarrow Basic IC constraint:

$$
E\left[R_{2}-R_{1} \mid r e c_{t}=2\right] \geq 0
$$

> Alternatively,

$$
\begin{gathered}
F(M)=E\left[R_{2}-R_{1} \mid M\right] \operatorname{Pr}[M] \\
F\left(r e c_{t}=a_{2}\right)=E\left[R_{2}-R_{1} \mid r e c_{t}=2\right] \operatorname{Pr}\left[\text { rec }_{t}=2\right] \geq 0
\end{gathered}
$$

$>$ Recommendation policy:

$$
F\left(r_{1} \in \cup_{\tau<t} I_{\tau}, R_{2}>R_{1}\right)+F\left(\left\{r_{1} \in I_{t}\right\}\right) \geq 0
$$

IC constraints

$>$ Recommendation policy

- With sets I_{+}
- $F\left(r_{1} \in \cup_{\tau<t} I_{\tau} \wedge\left\{R_{2}>R_{1}\right\}\right)+F\left(\left\{r_{1} \in I_{t}\right\}\right) \geq 0$

Positive (exploitation)
Negative (exploration)

Threshold policy

$>$ Partition policy such that $I_{t}=\left(i_{t-1}, i_{+}\right]$
$>I_{2}=\left(-\infty, i_{2}\right)$
$>\mathrm{I}_{\mathrm{T}+1}=\left(\mathrm{i}_{\mathrm{T}}, \infty\right)$

> Main Characterization:
The optimal policy is a threshold policy

Optimal has Tight IC constraints

Lemma:

If agent $t+1$ explores

$$
\left(\operatorname{Pr}\left[I_{t+1}\right]>0\right)
$$

Then
Agent thas a tight IC constraint.

Proof:

- Move exploration from agent $\mathrm{t}+1$ to agent t
- Improves sum of payoffs
- Replaces $r_{1}+R_{2}$ by

$$
R_{2}+\max \left\{r_{1}, r_{2}\right\}
$$

- Keeps the IC for agent t (since it was not tight)
- Keeps the IC for agent t+1 (remove exploration)

Threshold policy

$>$ What is NOT a threshold policy:

$>$ Proper Swap: $F\left(\left\{r_{1} \in B_{1}\right\}\right)=F\left(\left\{r_{1} \in B_{2}\right\}\right)$ $F\left[r_{1} \in B_{*}\right]=E\left[\mu_{2}-R_{1} \mid r_{1} \in B_{*}\right] \operatorname{Pr}\left[r_{1} \in B_{*}\right]$

Proper Swap Operation

$$
F\left(\left\{r_{1} \in B_{1}\right\}\right)=F\left(\left\{r_{1} \in B_{2}\right\}\right)
$$

Since $B_{2}<B_{1}$ it Implies $\operatorname{Pr}\left[B_{2}\right]>\operatorname{Pr}\left[B_{1}\right]$

Proper Swap - IC Analysis

$>$ Agent t_{1} unchanged

- Added B_{2} subtracted B_{1}
- Proper swap implies equal effect.
\Rightarrow Agents other than t_{1} and t_{2}
- Before t_{1} and after t_{2} : unchanged
- Between t_{1} and t_{2} : increase willingness
\circ Gain $\left(\operatorname{Pr}\left[B_{2}\right]-\operatorname{Pr}\left[B_{1}\right]\right) \max \left\{r_{1}, r_{2}\right\}$

Proper Swap - IC Analysis

$>$ Agent t_{2} (assuming real agent, not $\mathrm{T}+1$)

$$
F\left(r_{1} \in B_{1}, R_{2}>R_{1}\right)+F\left(\left\{r_{1} \in B_{2}\right\}\right)
$$

$$
F\left(r_{1} \in B_{2}, R_{2}>R_{1}\right)+F\left(\left\{r_{1} \in B_{1}\right\}\right)
$$

$$
F\left(r_{1} \in B_{2}, R_{2}>R_{1}\right)-F\left(r_{1} \in B_{1}, R_{2}>R_{1}\right)
$$

Proper Swap - IC Analysis

$$
\begin{aligned}
& E\left(E\left[R_{2}-R_{1} \mid R_{2}>R_{1}\right] \mid r_{1} \in B_{2}\right) \operatorname{Pr}\left[r_{1} \in B_{2}\right] \\
& >E\left(E\left[R_{2}-R_{1} \mid R_{2}>R_{1}\right] \mid r_{1} \in B_{1}\right) \operatorname{Pr}\left[r_{1} \in B_{1}\right]
\end{aligned}
$$

Recall:
$\operatorname{Pr}\left[\mathrm{B}_{2}\right]>\operatorname{Pr}\left[\mathrm{B}_{1}\right]$
$\mathrm{B}_{1}>\mathrm{B}_{2}$

Proper Swap - Payoff Analysis

- Before Swap:
- After Swap:

Before	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{1}}$	After	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{1}}$
t_{1}	r_{1}	r_{2}	t_{1}	r_{2}	r_{1}
t_{2}	r_{2}	$\operatorname{Max}\left\{r_{1}, r_{2}\right\}$	t_{2}	$\operatorname{Max}\left\{r_{1}, r_{2}\right\}$	r_{2}

$$
\text { GAIN }=\left(\operatorname{Pr}\left[\mathrm{B}_{2}\right]-\operatorname{Pr}\left[\mathrm{B}_{1}\right]\right)\left(\operatorname{Max}\left\{r_{1}, r_{2}\right\}-r_{1}\right)>0
$$

Optimal Policy

- Threshold policy
$>$ Define thresholds with infinite num. agents:
- $\Theta_{t, \infty}$
$>$ Compute for each t :
- $(T-t) E\left[\max \left\{R_{2}-\theta_{t} 0\right\}\right]=\theta_{t}-\mu_{2}$
$>$ Let τ be the minimal index that
- $\Theta_{t, \infty} \theta_{t}$
$>$ Threshold:
- $\Theta_{t, T}=\min \left\{\Theta_{t, \infty}, \theta_{t}\right\}$

How good is optimal?!

> The loss due to IC

- Constant (independent of T)
$>$ Bounding the number of exploring agents:
- $\frac{\mu_{1}-\mu_{2}}{\alpha}$
- $\alpha=F\left(\left\{R_{1}<R_{2}\right\} \wedge\left\{R_{1}<\mu_{2}\right\}\right)$
- $\alpha=E\left[R_{2}-R_{1} \mid R_{1}<R_{2}, R_{1}<\mu_{2}\right] \operatorname{Pr}\left[R_{1}<R_{2}, R_{1}<\mu_{2}\right]$

Two stochastic actions

$>$ Need to sample multiple times
$>$ How do we incentivize exploration?
$>$ Simple scheme:

- Same algorithm as deterministic
- Each step extended to $1 / \epsilon^{2}$ recommendations
$>$ Performance
- Maintain the BIC
- High regret: $T^{\frac{2}{3}}$

Basic Technique: Hidden exploration

- Embed exploration in a lot of exploitation
- Exploitation
- $a^{*}(h)=\arg \max E\left[\mu_{a} \mid h\right]$
- Exploration:
- $a^{0}(h)$
- Arbitrary function
- Recommendation:
- rec

Hidden exploration:

- Input: prior P, history h, parameter $\epsilon>0$,
- With probability ϵ :
- rec $\leftarrow a^{0}(h)$ explore
- Else
- $r e c \leftarrow a^{*}(h)$ exploit

Hidden Exploration: BIC

$>$ BIC property:
For any actions $a \neq a^{\prime}$:
$\operatorname{Pr}[r e c=a]>0 \Rightarrow E\left[\mu_{a}-\mu_{a^{\prime}} \mid r e c=a\right] \geq 0$
$>$ Posterior Gap: $G=E\left[\mu_{2}-\mu_{1} \mid h\right]$
$>$ Lemma: For $\epsilon \leq \frac{1}{3} E[G \cdot I\{G>0\}]$
algorithm HiddenExploration is BIC

Hidden Exploration: BIC

$>$ Recall:

- If ALG is BIC for rec $=a_{2}$ it is also for $r e c=a_{1}$
$>$ Proof of the lemma:
$>M_{2}=\left\{r e c=a_{2}\right\}, M_{\text {explore }}, M_{\text {exploit }}$
$>\operatorname{Pr}\left[M_{2}\right]>0$
- Otherwise trivial
$>F(M)=E[G \mid M] \operatorname{Pr}[M]$
\Rightarrow Need to show: $F\left(M_{2}\right) \geq 0$
- $F\left(M_{2}\right)=F\left(M_{\text {explore }} \wedge M_{2}\right)+F\left(M_{\text {exploit }} \wedge M_{2}\right)$

$$
\begin{aligned}
>F\left(M_{\text {exploit }} \wedge M_{2}\right) & =E[G \mid G>0] \operatorname{Pr}[G>0](1-\epsilon) \\
& =(1-\epsilon) F(\{G>0\})
\end{aligned}
$$

$>F\left(M_{\text {explore }} \wedge M_{2}\right) \geq F\left(M_{\text {explore }} \wedge M_{2} \wedge G<0\right)$

$$
\begin{gathered}
\geq F\left(M_{\text {explore }} \wedge G<0\right) \\
=E[G \mid G<0] \operatorname{Pr}[G<0] \epsilon \\
\quad=\epsilon F(\{G<0\})
\end{gathered}
$$

$>F\left(M_{2}\right) \geq(1-\epsilon) F(\{G>0\})+\epsilon F(\{G<0\})$
$>F(\{G>0\})+F(\{G<0\})=E\left[\mu_{2}-\mu_{1}\right]$
$>$ Sufficient:

$$
F\left(M_{2}\right) \geq \epsilon E\left[\mu_{2}-\mu_{1}\right]+(1-2 \epsilon) F(\{G>0\}) \geq 0
$$

$>$ Holds for:

$$
\begin{gathered}
\epsilon \leq \frac{F(\{G>0\})}{2 F(\{G>0\})+E\left[\mu_{1}-\mu_{2}\right]} \\
\epsilon \leq \frac{1}{3} F(\{G>0\}) \leq \frac{F(\{G>0\})}{2 F(\{G>0\})+E\left[\mu_{1}-\mu_{2}\right]}
\end{gathered}
$$

Last inequality follows from simple algebra and because the rewards are in [0,1]

Two stochastic actions - black box

- Black-box reduction
- Goal: "compile" an arbitrary algorithm ALG
- Arbitrary goal
- Input:

Arbitrary algorithm ALG

- Selects an action
- Observes reward
- Method:
- Run it using HiddenExploration
- Corollary:
- BIC
- vanishing regret

Repeated Hidden Exploration

- Parameters:
- P, $\epsilon>0, N_{0}$
- For $t \in\left[1, N_{0}\right]$
- $a_{t}=1$
- Claim: If for $t>N_{0}$:

$$
\epsilon \leq \frac{1}{3} F\left(\left\{G_{t}>0\right\}\right)
$$

the algorithm is BIC

- For $t>N_{0}$:
- With prob ϵ :

$$
\begin{aligned}
& a_{t} \leftarrow A L G \\
& A L G \leftarrow r_{t}
\end{aligned}
$$

- Else $a_{t} \leftarrow a^{*}\left(h_{t}\right)$

Repeated Hidden Exploration

- Claim: If $\epsilon \leq \frac{1}{3} F\left(\left\{G_{N_{0}+1}>0\right\}\right)$
then for $t>N_{0}: \epsilon \leq \frac{1}{3} F\left(\left\{G_{t}>0\right\}\right)$
$>$ Proof: We will show monotonicity

$$
\begin{gathered}
>E\left[G_{t} \mid G_{t}>0\right]=E\left[G_{t+1} \mid G_{t}>0\right] \\
>F\left(\left\{G_{t}>0\right\}\right)=E\left[G_{t} \cdot I\left\{G_{t}>0\right\}\right] \\
=E\left[G_{t+1} \cdot I\left\{G_{t}>0\right\}\right] \\
\leq E\left[G_{t+1} \cdot I\left\{G_{t+1}>0\right\}\right] \\
\quad=F\left(\left\{G_{t+1}>0\right\}\right)
\end{gathered}
$$

Repeated Hidden Exploration

>Regret Analysis

- If ALG has Bayesian Regret $R(T)=\sqrt{T}$
- Then RepeatedHiddenExploration has regret

$$
R^{\prime}(T) \leq N_{0}+\frac{1}{\epsilon} E[R(N)] \approx \sqrt{T / \epsilon}
$$

- $N \approx \epsilon T$ number of exploration steps

Summary

$>$ Adding incentives
> Two actions

- Deterministic: optimal
- Stochastic: Low regret
$>$ Multiple actions
- Deterministic: optimal policy?
- Stochastic: same idea, low regret

Resources

- Optimal policy

Deterministic actions

- K=2 [Kremer, M, Perry,

EC 2013 and JPE 2014]

- $K \geq 3$ [Cohen, M EC 2019]
- Limited domain
- Asymptotic Regret
- Stochastic actions:
- [M, Slivkins, Syrgkanis, EC 2015]
- Multiple Agents:
- [M, Slivkins, Syrgkanis, Wu, EC 2016]
- Multiple Principals
- [M, Slivkins, Wu, ITCS 2018]

Bayesian Persuasion

- Kamenica \& Gentzkow: AER 2011
- Two players:
- principal and agent
- Agent selects action
- Action effects both
- Principal selects information revelation
- How can the principal influence agent action?
- Example:
- Prosecutor and Judge
- Defendant:
- guilty of innocent.
- unobservable
- Trial:
- Convicted or acquitted
- Prosecutor
- max convictions
- Judge
- minimizes errors

Bayesian Persuasion

- A priori 70\% innocent
- No information
- judge equites
- Prosecutor
- Controls which tests are done, and how
- Information revelation
- Selects a test s.t.
- $\operatorname{Pr}[i \mid$ innocent $]=4 / 7$
- $\operatorname{Pr}[\mathrm{i} \mid$ innocent]=3/7
- $\operatorname{Pr}[\mathrm{g} \mid$ guilty $]=1$
- Judge, given:
- signal i: acquits
- 40\% defendants
- All innocent
- Signal g: convicts
- 60% of defendants
- Equally divided
- Although 30\% guilty, 60\% convicted !!!

Information Cascading :

Information Cascading

Agents ignore their input, and information does not aggregate

Our Setting: Private recommendations

