Exploration, Exploitation and Incentives

Yishay Mansour

Outline

- Incentives:
 - Actions are only recommendations
 - Agents decide whether to follow them
 - Need to induce exploration!

- Two deterministic actions
 - Optimal policy
- Two stochastic actions
 - Generic framework

Report Cards

- Report-card systems
 - Health-care, education, ...
 Public disclosure of information
 - Patients health, students scores, ...
- Pro:
 - Incentives to improve quality
 - Information to users
- Cons:
 - Incentives to "game" the system
 - avoid problematic cases

User Based Recommendations

- Recommendation web sites
- Example: TripAdvisor
- User based reviews
- Popularity Index
 - Proprietary algo.
 - Self-reinforcement
- Can be used to induce exploration

Waze: User based navigation

- Real time navigation recommendations
- Based on user inputs
 - Cellular/GPS
- Recommendation dilemma:
 - Need to try alternate routes to estimate time
 - Actually, done in practice

Resell tickets

- Secondary market for show tickets
 - StubHub
- Matches sellers and buyers
- New feature: price recommendation
 - Implicit coordination between sellers

Multi-Arm Bandit

- Simple decision model
- Multiple independent actions
- Uncertainty regarding the rewards
- Repeated interaction
- Tradeoff between exploration and exploitation

MAB

Classical setting

- uncertainty regarding rewards
- action execution:
 - arbitrary

Today setting

- uncertainty regarding rewards
- action execution:
 - control by agents
 - Bayesian Incentive Compatible (BIC)

Our Motivation

- > Agents need to select between few alternatives:
 - Hotels, Traffic routes, Doctors, ticket price
 - Known prior on the success
- ➤ Multiple agents arriving:
 - Each makes one decision, and get
 - Individual agents are strategic
 - Maximizing their reward

Agents are both producers and consumers

> Planner:

- Would like to learn and implement ne better alternative
 - Government, regulator, society, etc.
 - Maximize user satisfaction

Main Research Question

- ➤ Planner policy limitations:
 - No monetary incentives
 - Controlling revelation of information
- > Can the planner induce exploration?
 - Guarantee that the best alternative is selected
- What is the expected regret
 - Compared to a non-strategic setting.
 - Bound the cost of exploration

Model

Environment

- K actions: $a_1 \dots a_k$
- Prior over μ_i
 - Realized only once, initially
- Given μ_i action i has reward
 R_i (r.v.) s.t. E[R_i]=μ_i
 - Deterministic/stochastic
 - Range [0,1]
- Notation: $E[\mu_{i-1}] > E[\mu_i]$

Agents

- Tagents
 - Arrive sequentially
 - Known arrival order
- Select once a single action
 - Get the reward of the selected action
- Risk neutral
- Agent optimal strategy:
 - Given all the observed information
 - Select the action that maximizes expected payoff

Model

Planner

- Controls the information
- Agents are Incentive Compatible
- No side payments
- Planner goal:
 - Social welfare maximization
 - Minimize regret
 - REGRET = T^* max μ_i E[Rew]
 - Arbitrary
 - Max-min, etc.

Planner actions:

- Gives agent t message m_t
 - information about past.
 - W.l.o.g. recommendation **a**_t
- Observes the outcome
 - Realization r_{a_t}
- Cumulative Reward

Rew =
$$\sum_{t} r_{a_t}$$

Agents know Planner policy

Controlling Information

Report Cards
Public Recom.

Waze Individual Recom.

TripAdvisor Time based

Ticket resell Group recom.

Simple recommendations: No information

> Example:

- $R_1 \sim U[-1,5]$
- $R_2 \sim U[-5,5]$
- T large (optimal to test the both alternatives).

- > All agents prefer the better a priori alternative
 - Action 1
- No exploration!
- ➤ High regret: 2.6*T-2*T=0.6*T

Simple recommendations: Full Transparency

- > Agent 1: chooses the first action.
- \triangleright Agent 2: Observes r_1
 - If $r_1 > 0$: Selects action 1
 - All following agents select action 1
 - If $r_1 \le 0$: Selects action 2
 - All following agents select the better action
- outcome is suboptimal for large T:
 - Regret = 2.6*T 2.252*T = 0.348*T

Public Recommendations

- Better than Full information
 - Only recommendations are public
 - In the example:
 recommend action 2
 If r₁ < +1

- Main Observation:
- all exploration can move to second agent
 - Simple characterization
 - Significant limitation
- Linear regret:

$$2.6*T - 2.42*T = 0.18*T$$

Explorable Actions: Two deterministic actions

- Can we hope to explore any action?!
 - Main limitation is BIC
- Example:
 - Action 1 always payoff 0
 - Action 2 prior Unif[-2,+1]
 - $E[R_2] = -1/2 < 0$
- Agent t knows:
 - All prior agents preferred action 1
 - Planner has no info on action 2
 - Hence, will do action 1

Condition
$$Pr[\mu_1 < E[\mu_2]] > 0$$

Explorable actions: Two stochastic actions

- > Requirement
 - We need "Evidence" that action 2 might be better
 - For this we can use realizations of action 1

- > Condition for a distribution P
 - There exists k_p such that there exists
 - Pr[$E[\mu_2] > E[\mu_1 \mid some k_p outcomes]] > 0$

Optimal Policy (first agent)

Example:

- $R_1 \sim U[-1, 5]$
- R₂ ~ *U* [-5,5]
- T large (optimal to test the both alternatives).

- Recommend action 1 to first agent
 - The only recommendation agent 1 will follow

Optimal Policy (second agent)

- recommends 2^{nd} alternative to agent two whenever $r_1 \leq 1$.
- This is *IC* because
 - $E[R_1 \mid recommend(2)] = 0$

- > Better than full transparency
 - > more experimentation by the second agent.
 - > full transparency is sub-optimal.
- > But we can do even better.

Optimal Policy (3rd agent)

- recommends third agent to use 2nd action if one of two cases occurs
 - i. Second agent tested 2^{nd} action $(R_1 \le 1)$ and the planner learned that $R_2 > R_1$
 - ii. 1<R₁≤1+x, so the third agent is the first to test 2nd action
 - iii. Gain is constant. Loss due to exploration can be made arbitrarily small. We can always balance them.

Two deterministic actions

Optimal Algorithm

- Agent 1:
 - recommend action 1.
 - Observe reward r₁
- Agent t >1:
 - Both actions sampled: recommend the better action
 - Otherwise: If $r_1 < \theta_t$ then recommend action 2 otherwise action 1

Properties of optimal policy

- Recommendation sufficient
 - revelation principle
- IC constraints tight
- Generally: explore low values before high
 - threshold
- Intuition: tradeoff between potential reasons for being recommended action 2

Recommendation Policy

Recommendation Policy:

- For agent t,
 - Gives recommendation rec_t
- Recommendation is IC
 - $E[R_j R_i \mid rec_t = a_j] \ge 0$
- Note that it requires IC:
 - Implies: recommend to agent 1 action a₁
- Claim: Optimal policy is a Recommendation Policy

Proof (Revelation Principle):

- M(j,t) set of messages that cause agent t to select action a_i .
- H(j,t) the corresponding histories
- $E[R_j-R_i|m] \ge 0$ for $m \in M(j,t)$
- Consider the recommendation a_j after $h \in H(j,t)$
- Still IC
- Identical outcomes

Partition Policy

Partition Policy:

- Recommendation policy
- Agent 1: recommending action a_1 and observing r_1
- Disjoint subsets I_t , $t \ge 2$
- If $r_1 \in I_t$
 - Agent t first to explore a₂
 - Any agent t' > t uses the better of the two actions
 - Payoff $\max\{r_1, r_2\}$
- If $r_1 \in I_{T_+ 1}$ no agent explores a_2

Optimal policy is a partition:

- Recommending the better action
 - when both are known
 - Optimizes sum of payoffs
 - Strengthen the IC

Only worse action is "important"

Lemma:

Any policy that is

IC w.r.t. a_2 is

IC w.r.t. a_1

Proof:

- Let $K_t = \{(R_1, R_2)\}$ set of event that cause $rec_t = a_2$
- If empty then $E[R_1-R_2] \ge 0$
- Otherwise: $E[R_2 R_1 | K_t] \ge 0$
 - Since it is an IC policy
- Originally: $E[R_2 R_1] < 0$
- Therefore

$$E[R_2 - R_1 \mid \text{not } K_t] < 0$$

Second agent explores low values

 Claim: The second agent explores for any value

$$r_1 < \mu_2$$

Proof:

- Consider an agent t that explores for $r_1 < \mu_2$
 - Call this set of values B
- Move the exploration of B to agent 2
- Agent 2: Improve the IC constraint for a_2
 - By $E_B[\mu_2 r_1] > 0$
- Agent t: Improve the IC constraint for a₂
 - When $r_1 \in B$ the payoff is $E_B[\max\{r_2, r_1\}]$

IC constraints

> Basic IC constraint:

$$E[R_2 - R_1 | rec_t = 2] \ge 0$$

> Alternatively,

$$F(M) = E[R_2 - R_1 | M] \Pr[M]$$

$$F(rec_t = a_2) = E[R_2 - R_1 | rec_t = 2] \Pr[rec_t = 2] \ge 0$$

> Recommendation policy:

$$F(r_1 \in \bigcup_{\tau < t} I_\tau, R_2 > R_1) + F(\{r_1 \in I_t\}) \ge 0$$

IC constraints

- > Recommendation policy
 - With sets I_t

•
$$F(r_1 \in \cup_{\tau < t} I_\tau \land \{R_2 > R_1\}) + F(\{r_1 \in I_t\}) \ge 0$$

Positive (exploitation)

Negative (exploration)

Threshold policy

 \triangleright Partition policy such that $I_{t} = (i_{t-1}, i_{t}]$

$$\triangleright I_2 = (-\infty, i_2)$$

$$>I_{T+1}=(i_{T},\infty)$$

Agent 2 Agent 3 Agent 4 Agent 5 No exploration

➤ Main Characterization:

The optimal policy is a threshold policy

Optimal has Tight IC constraints

Lemma:

If agent t+1 explores $(Pr[I_{t+1}]>0)$

Then

Agent t has a tight IC constraint.

Proof:

- Move exploration from agent t+1 to agent t
- Improves sum of payoffs
 - Replaces r_1+R_2 by $R_2 + \max\{r_1, r_2\}$
- Keeps the IC for agent t (since it was not tight)
- Keeps the IC for agent t+1 (remove exploration)

Threshold policy

> What is NOT a threshold policy:

➤ Proper Swap: $F(\{r_1 \in B_1\}) = F(\{r_1 \in B_2\})$ $F[r_1 \in B_*] = E[\mu_2 - R_1 | r_1 \in B_*] \Pr[r_1 \in B_*]$

Proper Swap Operation

$$F(\{r_1 \in B_1\}) = F(\{r_1 \in B_2\})$$

Since $B_2 < B_1$ it Implies $Pr[B_2] > Pr[B_1]$

Proper Swap – IC Analysis

- ➤ Agent t₁ unchanged
 - Added B₂ subtracted B₁
 - Proper swap implies equal effect.
- \triangleright Agents other than t_1 and t_2
 - Before t₁ and after t₂: unchanged
 - Between t₁ and t₂: increase willingness
 - \circ Gain (Pr[B₂] Pr[B₁]) max{r₁,r₂}

Proper Swap – IC Analysis

> Agent t₂ (assuming real agent, not T+1)

$$F(r_1 \in B_1, R_2 > R_1) + F(\{r_1 \in B_2\})$$

before

$$F(r_1 \in B_2, R_2 > R_1) + F(\{r_1 \in B_1\})$$

after

$$F(r_1 \in B_2, R_2 > R_1) - F(r_1 \in B_1, R_2 > R_1)$$

diff

Proper Swap – IC Analysis

$$E(E[R_2 - R_1 | R_2 > R_1] | r_1 \in B_2) \Pr[r_1 \in B_2]$$

> $E(E[R_2 - R_1 | R_2 > R_1] | r_1 \in B_1) \Pr[r_1 \in B_1]$

Proper Swap – Payoff Analysis

Before Swap:

• After Swap:

Before	B_2	B_1	After	B_2	B_1
t ₁	r_1	r_2	t_1	r ₂	r_1
t_2	r_2	$Max\{r_1,r_2\}$	t_2	$Max\{r_1,r_2\}$	r_2

GAIN =
$$(Pr[B_2] - Pr[B_1]) (Max\{r_1, r_2\} - r_1) > 0$$

Optimal Policy

- > Threshold policy
- > Define thresholds with infinite num. agents:
 - $\Theta_{t \infty}$
- > Compute for each t:
 - $(T t)E[\max\{R_2 \theta_t \ 0\}] = \theta_t \mu_2$
- \triangleright Let τ be the minimal index that
 - $\Theta_{t \infty} > \Theta_{t}$
- > Threshold:
 - $\Theta_{t,T} = \min\{\Theta_{t,\infty}, \theta_t\}$

How good is optimal?!

- > The loss due to IC
 - Constant (independent of T)
- > Bounding the number of exploring agents:
 - $\frac{\mu_1 \mu_2}{\alpha}$
 - $\alpha = F(\{R_1 < R_2\} \land \{R_1 < \mu_2\})$
 - $\alpha = E[R_2 R_1 | R_1 < R_2, R_1 < \mu_2] \Pr[R_1 < R_2, R_1 < \mu_2]$

Two stochastic actions

- ➤ Need to sample multiple times
- ➤ How do we incentivize exploration?
- ➤ Simple scheme:
 - Same algorithm as deterministic
 - Each step extended to $1/\epsilon^2$ recommendations
- > Performance
 - Maintain the BIC
 - High regret: $T^{\frac{2}{3}}$

Basic Technique: Hidden exploration

- Embed exploration in a lot of exploitation
- Exploitation
 - $a^*(h) = \arg \max E[\mu_a | h]$
- Exploration:
 - $a^{0}(h)$
 - Arbitrary function
- Recommendation:
 - rec

Hidden exploration:

• Input: prior P, history h, parameter $\epsilon > 0$,

- With probability ϵ :
 - $rec \leftarrow a^0(h)$ explore
- Else
 - $rec \leftarrow a^*(h)$ exploit

Hidden Exploration: BIC

➤ BIC property:

For any actions $a \neq a'$:

$$\Pr[rec = a] > 0 \Rightarrow E[\mu_a - \mu_{a'} | rec = a] \ge 0$$

 \triangleright Posterior Gap: $G = E[\mu_2 - \mu_1 | h]$

► Lemma: For $\epsilon \le \frac{1}{3}E[G \cdot I\{G > 0\}]$

algorithm HiddenExploration is BIC

Hidden Exploration: BIC

- > Recall:
 - If ALG is BIC for $rec = a_2$ it is also for $rec = a_1$
- ➤ Proof of the lemma:
- > $M_2 = \{rec = a_2\}, M_{explore}, M_{exploit}$
- $> \Pr[M_2] > 0$
 - Otherwise trivial
- $> F(M) = E[G|M] \Pr[M]$
- \triangleright Need to show: $F(M_2) \ge 0$
 - $F(M_2) = F(M_{explore} \land M_2) + F(M_{exploit} \land M_2)$

$$F(M_{exploit} \land M_2) = E[G|G > 0] \Pr[G > 0](1 - \epsilon)$$
$$= (1 - \epsilon) F(\{G > 0\})$$

$$F(M_{explore} \land M_2) \ge F(M_{explore} \land M_2 \land G < 0)$$

$$\ge F(M_{explore} \land G < 0)$$

$$= E[G|G < 0] \Pr[G < 0] \epsilon$$

$$= \epsilon F(\{G < 0\})$$

$$F(M_2) \ge (1 - \epsilon) F(\{G > 0\}) + \epsilon F(\{G < 0\})$$

$$F(\{G > 0\}) + F(\{G < 0\}) = E[\mu_2 - \mu_1]$$

> Sufficient:

$$F(M_2) \ge \epsilon E[\mu_2 - \mu_1] + (1 - 2\epsilon)F(\{G > 0\}) \ge 0$$

> Holds for:

$$\epsilon \le \frac{F(\{G>0\})}{2F(\{G>0\}) + E[\mu_1 - \mu_2]}$$

$$\epsilon \le \frac{1}{3}F(\{G>0\}) \le \frac{F(\{G>0\})}{2F(\{G>0\}) + E[\mu_1 - \mu_2]}$$

Last inequality follows from simple algebra and because the rewards are in [0,1]

Two stochastic actions – black box

- Black-box reduction
- Goal: "compile" an arbitrary algorithm ALG
 - Arbitrary goal
- Input:
 - Arbitrary algorithm ALG
 - Selects an action
 - Observes reward

- Method:
 - Run it using HiddenExploration
- Corollary:
 - BIC
 - vanishing regret

Repeated Hidden Exploration

- Parameters:
 - P, $\epsilon > 0$, N_0
- For $t \in [1, N_0]$
 - $a_t = 1$
- For $t > N_0$:
 - With prob ϵ :

$$a_t \leftarrow ALG$$
$$ALG \leftarrow r_t$$

• Else $a_t \leftarrow a^*(h_t)$

• Claim: If for $t > N_0$:

$$\epsilon \le \frac{1}{3}F(\{G_t > 0\})$$

the algorithm is BIC

Repeated Hidden Exploration

► Claim: If
$$\epsilon \leq \frac{1}{3}F(\{G_{N_0+1} > 0\})$$

then for $t > N_0$: $\epsilon \leq \frac{1}{3}F(\{G_t > 0\})$
► Proof: We will show monotonicity
► $E[G_t|G_t > 0] = E[G_{t+1}|G_t > 0]$
► $F(\{G_t > 0\}) = E[G_t \cdot I\{G_t > 0\}]$
 $= E[G_{t+1} \cdot I\{G_t > 0\}]$
 $\leq E[G_{t+1} \cdot I\{G_{t+1} > 0\}]$
 $= F(\{G_{t+1} > 0\})$

Repeated Hidden Exploration

- Regret Analysis
 - If ALG has Bayesian Regret $R(T) = \sqrt{T}$
 - Then RepeatedHiddenExploration has regret

$$R'(T) \le N_0 + \frac{1}{\epsilon} E[R(N)] \approx \sqrt{T/\epsilon}$$

• $N \approx \epsilon T$ number of exploration steps

Summary

- > Adding incentives
- > Two actions
 - Deterministic: optimal
 - Stochastic: Low regret
- ➤ Multiple actions
 - Deterministic: optimal policy?
 - Stochastic: same idea, low regret

Resources

- Optimal policy
 - **Deterministic actions**
 - K=2 [Kremer, M, Perry,
 EC 2013 and JPE 2014]
 - *K* ≥ 3 [Cohen, M EC 2019]
 - Limited domain

- Asymptotic Regret
 - Stochastic actions:
 - [M, Slivkins, Syrgkanis, EC 2015]
 - Multiple Agents:
 - [M, Slivkins, Syrgkanis, Wu, EC 2016]

- Multiple Principals
 - [M, Slivkins, Wu, ITCS 2018]

Bayesian Persuasion

- Kamenica & Gentzkow: AER 2011
- Two players:
 - principal and agent
- Agent selects action
 - Action effects both
- Principal selects information revelation
- How can the principal influence agent action?

- Example:
- Prosecutor and Judge
- Defendant:
 - guilty of innocent.
 - unobservable
- Trial:
 - Convicted or acquitted
- Prosecutor
 - max convictions
- Judge
 - minimizes errors

Bayesian Persuasion

- A priori 70% innocent
 - No information
 - judge equites
- Prosecutor
 - Controls which tests are done, and how
 - Information revelation
 - Selects a test s.t.
 - Pr[i | innocent]=4/7
 - Pr[i | innocent]=3/7
 - Pr[g | guilty] = 1

- Judge, given:
 - signal i: acquits
 - 40% defendants
 - All innocent
 - Signal g: convicts
 - 60% of defendants
 - Equally divided
- Although 30% guilty, 60% convicted !!!

Information Cascading:

OR

Information Cascading

Agents ignore their input, and information does not aggregate

Our Setting: Private recommendations

